Я так понял, что задача сводится к тому, что нам неизвестен угол треугольника, и нам нужно его найти.
Для того чтобы найти синус угла, а затем и сам угол в произвольном треугольнике, необходимо знать длины двух сторон: стороны, противолежащей искомому углу, и какой-либо другой стороны — и ещё величину угла, противолежащего этой последней стороне.
А затем нужно применить теорему синусов.
Обозначим искомый (неизвестный) угол как A, противолежащую сторону — a, другую известную сторону — b, известный противолежащий этой стороне угол — B.
По теореме синусов: a/sin(A) = b/sin(B).
Отсюда: sin(A) = a * sin(B)/b;
A = arcsin[a * sin(B)/b].
Для того, чтобы найти синус угла прямоугольного треугольника можно воспользоваться определением синуса. А синус - это отношение противолежащ. катета к гипотенузе. То есть синус угла А = ВС/АВ, где ВС - противол. катет, АВ - гипотенуза.
Для того, чтобы рассчитать синус угла в треугольнике, где один угол составляет 90 градусов, необходимо знать показатели двух сторон, а именно гипотенузы и катета, который не соприкасается с углом, то есть противолежащего.
В случае прямоугольного треугольника задача на нахождение синуса любого угла сводится всего лишь к вычислению отношения противолежащего от угла катета к гипотенузе - полученное значение и будет синусом. В произвольном треугольнике найти синус угла уже сложнее, но также возможно. Для этого надо хоть что-то знать из параметров треугольника. Например если известны три стороны треугольника, то углы находятся по теореме косинусов, а потом при желании легко находится синус уже найденного угла:
Так же синус любого угла можно найти если известны две стороны и угол между ними - по той же теореме косинусов находится третья сторона и далее как было описано.
Если же угол находится не между известными сторонами в ход идет теорема синусов - находится второй угол не между сторонами и по свойству что сумма углов - 180 градусов находится третий угол:
Чтобы ответить правильно на данный вопрос, нужно уточнить, синус угла в каком треугольнике нужно найти. Если этот треугольник произвольный, то это мы можем сделать только по теореме синусов (здесь см. исчерпывающий ответ Алекса).
Если же нужно найти синус острого угла в прямоугольном треугольнике, то нужно воспользоваться определением синуса угла (как отношения противолежащего катета к гипотенузе). Тогда ответом будет: синус угла А = ВС/АВ, где ВС - противолежащий катет, АВ - гипотенуза.
Если величина угла неизвестна, то так: синус угла равен отношению длины противолежащей рассматриваемому углу стороны к диаметру описанной вокруг треугольника окружности. А как найти этот диаметр? Нужно найти центр описанной окружности. Для этого через середины любых двух сторон треугольника провести перпендикуляры. Точка пересечения этих перпендикуляров и есть центр описанной окружности. Расстояние от нее до любой вершины треугольника - радиус описанной окружности.
Если известен угол треугольника, то можно воспользоваться специальным справочником и посмотреть там синус данного угла. Если же не известен угол, но то можно воспользоваться теоремой синусов. В частном случае, синус угла в прямоугольном треугольнике равен отношению противолежащего катета к гипотенузе.
Доброго времени суток.
Для нахождения синуса угла/углов прямоугольного треугольника можно воспользоваться двумя способами:
Можно найти синус угла двумя способами и сравнить значения.
Все довольно просто.
Чтобы найти синус угла в любом треугольнике, необходимо воспользоваться формулами. Вот на этом рисунке показаны основные формулы, позволяющие рассчитывать синус угла в треугольнике:
Воспользуйтесь этими формулами для рассчтеа.
Давайте дадим определение, что же такое синус.
Синус угла (sin) в треугольнике — это отношение противолежащего катета к гипотенузе.
Так что найти синус угла довольно таки просто, если есть значение катета и гипотенузы.
Добавить комментарий