Можно попробовать через половинные аргументы
2cos x = 4cos^2(x/2) - 2
cos(3x/2) = 4cos^3(x/2) - 3cos(x/2)
Получаем
4cos^2(x/2) - 2 - 4cos^3(x/2) + 3cos(x/2) < 1
4cos^2(x/2) - 3 - 4cos^3(x/2) + 3cos(x/2) < 0
(4cos^2(x/2) - 3)*(1 - cos x) < 0
Произведение < 0, когда сомножители имеют разные знаки
1)
{ 4cos^2(x/2) - 3 < 0
{ 1 - cos x > 0
{ cos^2 x < 3/4
{ cos x < 1 - это верно при любом x =/= 2pi*k
cos^2 x < 3/4
-sqrt(3)/2 < cos x < sqrt(3)/2
pi/6 + 2pi*k < x1 < 5pi/6 + 2pi*k
7pi/6 + 2pi*k < x2 < 11pi/6 + 2pi*k
2)
{ 4cos^2(x/2) - 3 > 0
{ 1 - cos x < 0
{ cos^2 x > 3/4
{ cos x > 1 - это неравенство решений не имеет. И вся система тоже.
Добавить комментарий