Нужно найти каждый множитель каждого из двух чисел, у которых находим наименьшее общее кратное, а потом перемножить друг на друга множители, которые совпали у первого и второго числа. Результатом произведения будет искомое кратное.
Складывать, умножать, делить, приводить к общему знаменателю и другие арифметические действия очень увлекательное занятие, особенно восхищают примеры, занимающие целый лист.
Итак найти общее кратное для двух чисел, которое будет являться самым маленьким числом на которое делятся два числа. Хочу заметить, что не обязательно в дальнейшем прибегать к формулам, чтобы найти искомое, если можешь считать в уме (а это можно натренировать), то цифры сами всплывают в голове и потом дроби щелкаются как орешки.
Для начала усвоим, что можно умножить два числа друг на друга, а потом эту цифру уменьшать и делить поочередно на данные два числа, так мы найдем наименьшее кратное.
Например, два числа 15 и 6. Умножаем и получаем 90. Это явно больше число. Причем 15 делится на 3 и 6 делится на 3, значит 90 тоже делим на 3. Получаем 30. Пробуем 30 разделить 15 равно 2. И 30 делим 6 равно 5. Так как 2 это предел, то получается, что наименьшее кратное для чисел 15 и 6 будет 30.
С цифрами побольше будет немного трудней. но если знать, какие цифры дают нулевой остаток при делении или умножении, то трудностей, в принципе, больших нет.
НОК, или наименьшее общее кратное, - это наименьшее натуральное число двух и более чисел, которое делится на каждое из данных чисел без остатка.
Вот пример того, как найти наименьшее общее кратное 30 и 42.
Для 30 - это 2 х 3 х 5.
Для 42 - это 2 х 3 х 7. Так как 2 и 3 имеются в разложении числа 30, то вычеркиваем их.
В итоге получаем, что НОК чисел 30 и 42 равен 210.
Представляю ещё один способ нахождения наименьшего общего кратного. Рассмотрим его на наглядном примере.
Необходимо найти НОК сразу трёх чисел: 16, 20 и 28.
16 = 2·2·4
20 = 2·2·5
28 = 2·2·7
16 = 2·2·4 = 2^2·4^1
20 = 2·2·5 = 2^2·5^1
28 = 2·2·7 = 2^2·7^1
НОК = 2^2·4^1·5^1·7^1 = 4·4·5·7 = 560.
НОК(16, 20, 28) = 560.
Таким образом, в итоге расчета получилось число 560. Оно является наименьшим общим кратным, то есть делится на каждое из трёх чисел без остатка.
Вот видео, в котором вам будет предложено два способа нахождения наименьшего общего кратного (НОК). Поупражнявшись в использовании первого из предложенных способов, вы сможете лучше понять, что такое наименьшее общее кратное.
Чтобы найти наименьшее общее кратное, нужно выполнить последовательно несколько простых действий. Рассмотрим это на примере двух чисел: 8 и 12
Проверяя, убеждаемся, что 24 делится и на 8 и на 12, причем это наименьшее натуральное число, которое делится на каждое из этих чисел. Вот мы и нашли наименьшее общее кратное.
Попробую объяснить на примере цифр 6 и 8. Наименьшее общее кратное - это число, которое можно разделить на эти числа(в нашем случае 6 и 8) и остатка не будет.
Итак, начинаем умножать сначала 6 на 1, 2, 3 и т. д и 8 на 1, 2, 3 и т. д.
Получается:
Умножаем на 6 - 6-12-18-24-30-36-42-48-54-60
Умножаем не 8 - 8-16-24-32-40-48....
Как видим, и там и там есть 48, следовательно у чисел 6 и 8 наименьшее общее кратное - 48.
Наименьшее общее кратное число - это такая цифра, которая разделится на несколько предложенных чисел без остатка. Для того, чтобы такую цифру высчитать, надо взять каждое число и разложить его на простые множители. Те цифры, которые совпадают, убираем. Оставляет всех по одной, перемножаем их между собой по очереди и получаем искомое - наименьшее общее кратное.
Например у нас есть числа 3 и 5 и нам надо найти НОК(наименьшее общее кратное). Нам надо умножать и тройку и пятёрку на все числа начиная с 1 2 3 ... и т д пока мы не увидим одинаковое число и там и там.
Множим тройку и получаем: 3, 6, 9, 12, 15
Множим пятёрку и получаем: 5, 10, 15
НОК = 15
Метод разложения на простые множители - самый классический для нахождения наименьшего общего кратного (НОК) для нескольких чисел. Наглядно и просто продемонстрирован этот метод в следующем видеоролике:
Добавить комментарий