Как решить систему дифференциального уравнения с помощью характеристического уравнения ?
Как решить систему дифференциального уравнения с помощью характеристического уравнения ?
Всё просто..
Систему из двух линейных дифуравнений можно преобразовать одно в линейное дифуравнение второго порядка..
Для этого например находим у из первого уравнения:
y=6x-x'
Дифференцируем его:
y'=6x'-x''
Теперь подставляем во второе уравнение:
6x'-x''=3x+2(6x-x')
Теперь приводим:
6x'-x''-3x-12x+2x'=0
Окончательно получаем дифуравнение второго порядка:
-x''+8x'-15x=0
Решаем это уравнение, оно имеет только свободную составляющую..
Находим решение квадратного алгебраического уравнения:
-x^2+8x-15=0
x1=5
x2=3
Оба корня действительные..
Тогда решение уравнения может быть выглядеть:
x(t)=C1e^5t+C2e^3t
Теперь ищем постоянные интегрирования:
x(0)=C1+C2
x'(0)=5C1+3C2
Откуда решая систему получим:
C2=(5x(0)-x'(0))/2
C1=(-3x(0)+x'(0))/2
Из первого уравнения:
y=6x-x'
x'=5C1e^5t+3C2e^3t
Откуда:
y(t)=6(C1e^5t+C2e^3t)-5C1e^5t-3C2e^3t
Окончательно:
y(t)=C1e^5t+3C2e^3t
Постоянные интегрирования через нулевые начальные условия по x и у:
x(0)=C1+C2
y(0)=C1+3C2
Откуда:
С1=(3х(0)-у(0))/2
С2=(х(0)-у(0))/2
Подставляем и получаем окончательные решения:
x(t)=((3x(0)-y(0))/2)e^5t+((x(0)-y(0))/2)e^3t
y(t)=((3x(0)-y(0))/2)e^5t+(3(x(0)-y(0))/2)e^3t
Всё просто..
Систему из двух линейных дифуравнений можно преобразовать одно в линейное дифуравнение второго порядка..
Для этого например находим у из первого уравнения:
y=6x-x'
Дифференцируем оное:
y'=6x'-x''
Теперь подставляем во второе уравнение:
6x'-x''=3x+2(6x-x')
Теперь приводим:
6x'-x''-3x-12x+2x'=0
Окончательно получаем дифуравнение второго порядка:
-x''+8x'-15x=0
Решаем это уравнение, оно имеет только свободную составляющую..
Находим решение квадратного алгебраического уравнения:
-x^2+8x-15=0
x1=5
x2=3
Оба корня действительные..
Тогда решение уравнения может быть выглядеть:
y(t)=C1e^5+C2e^3
Теперь ищем постоянные интегрирования:
y(0)=C1+C2
y'(0)=5C1+3C2
Откуда решая систему получим:
C2=(5y(0)-y'(0))/2
C1=(-3y(0)+y'(0))/2
Из второго уравнения:
x(t)=(y'-2y)/3
x(t)=(5C1e^5+3C2e^3-2(C1e^5+C2e^3))/3
Откуда:
x(t)=(5C1e^5+3C2e^3-2C1e^5-2C2e^3)/3
x(t)=(3C1e^5+C2e^3)/3
Добавить комментарий